A Nullstellensatz with Nilpotents and Zariski’s Main Lemma on Holomorphic Functions
نویسنده
چکیده
The classical Nullstellensatz asserts that a reduced affine variety is known by its closed points; algebraically, a prime ideal in an affine ring is the intersection of the maximal ideals containing it. A leading special case of our theorem says that any affine scheme can be distinguished from its subschemes by its closed points with a bounded index of nilpotency; algebraically, an ideal I in an affine ring A may be written as
منابع مشابه
Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملA remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane
In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.
متن کاملUnivalent holomorphic functions with fixed finitely many coefficients involving Salagean operator
By using generalized Salagean differential operator a newclass of univalent holomorphic functions with fixed finitely manycoefficients is defined. Coefficient estimates, extreme points,arithmetic mean, and weighted mean properties are investigated.
متن کاملFuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma
The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.
متن کامل